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ABSTRACT 

It is proved that the set of p's such that Ip is isomorphic to a subspace of a 
given Orlicz space l~ forms an interval. Some examples and properties of 
minimal Orlicz sequence spaces are presented. It is proved that an Orlicz 
function space (different from/2) is not isomorphic to a subspace of an Orlicz 
sequence space. Finally it is shown (under a certain restriction) that if two 
Orlicz function spaces are isomorphic, then they are identical (i.e. consist of 
the same functions). 

1. Introduction 

As the title of the paper indicates, this is a continuation of  two previous papers 

([8], [9]). However, apart from references to some results in the previous papers, 

this paper is quite self-contained. 

In Section 2 we consider the set of  p's for which lp is isomorphic to a subspace 

of  an Orlicz space It. We show that this set constitutes a closed interval (which 

may reduce to a single point). This interval is identical to the interval associated 

with an Orlicz space in various places in the literature. As a consequence we get 

that Ip is isomorphic to a subspace of  a reflexive Orlicz space l~ if and only if it 

is isomorphic to a quotient space of  lr. (In general Ip need not, however, be 

isomorphic to a complemented subspace of  1F, as examples given in I-9] and 

Section 3 below show.) This result exhibits a special property of  lp spaces: simple 

examples (given in [9]) show that an Orlicz space la may be isomorphic to a 

subspace of a reflexive Orlicz space Iv without la being a quotient space of  Iv. 

As an easy application of  this result concerning lp subspaces of  Orlicz spaces, we 

show that a well-known sufficient condition for every operator from lF to la to be 

compact is also a necessary condition. 
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Section 3 is devoted mainly to the study of minimal Orlicz sequence spaces. 

Minimal Orlicz spaces were introduced in [-9] (their definition is given at the end 

of this introduction). As far as complemented subspaces are concerned, these 

spaces resemble the lp spaces. It might even be true that like the Ip spaces, the 

minimal Orlicz sequence spaces are prime spaces, i.e. that every complemented 

subspace of such an X is either isomorphic to X itself or it is finite-dimensional. 

The first result in Section 3 is a characterization of the Ip spaces among the minimal 

Orlicz sequence spaces: a minimal Orlicz sequence space is isomorphic to an Ip 
space if and only if it has a unique symmetric basis, up to equivalence. 

Section 3 also describes a way of representing an (essentially) general Orlicz 

function in a convenient form. Using this representation we give an example of 

a minimal Orlicz sequence space whose interval is non degenerate and an example 

of a minimal Orlicz sequence space which is not isomorphic to lp but whose 

interval consists of a single point. 

A remark should be made concerning the general nature of Sections 2 and 3. 

The results quoted above are in the general spirit of Banach space theory. The 

proofs given here do not, however, involve the investigation of Banach spaces. In 

[8] and [-9] several Banach space theoretic properties of lr were translated into 

properties of the flow Tt defined by TtF(x) = F(tx) /F(t) .  Sections 2 and 3 are 

mainly concerned with a direct investigation of the properties of this flow. In 

many places the argument resembles elementary and standard reasonings in 

topological dynamics. We do not make explicit use of results from topological 

dynamics since our setting is slightly different from the usual one (mainly because 

we identify equivalent Orlicz functions). 

Another general remark concerning Sections 2 and 3 is this: we assume through- 

out that the function F generating the flow is convex. In most of the arguments, 

the convexity of F does not play any role (of course, in studying nonconvex F 

we have to allow also exponents p with 0 < p < 1). Since for nonconvex F 

the sequence space le is not a Banach space, we have not pursued this possible 

generalization of the results of Sections 2 and 3. 

The last section of this paper, Section 4, contains some results on Orlicz function 

spaces Lr and their relation to Orlicz sequence spaces. All the Orlicz function 

spaces we consider here are on the unit interval [0, 1] endowed with the usual 

Lebesgue measure on it. The structure of Orlicz function spaces is naturally far 

more complicated than that of Orlicz sequence spaces. Some very interesting 
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results on Orlicz function spaces were proved by probabilistic methods by Bretag- 

nolle and Dacunha-Castelle [-1]. Our results complement some points in their 

work. 

The first result we prove in Section 4 is that unless Le is a Hilbert space (i.e. 

F(x) is equivalent at oo to x 2) the space Lr cannot be embedded isomorphically 

in a separable Orlicz sequence space. The reverse question concerning the embed- 

ding of an Orlicz sequence space into an Orlicz function space is not yet complete- 

ly settled. Though we shall not directly discuss this question in Section 4, let us 

make here some comments concerning it. In an Orlicz function space Le there 

are subspaces isomorphic to l~ so that the unit vectors in Io correspond to 

functions in Le which have disjoint supports. These spaces l G are easy to classify. 

The situation here is very similar to that of l~ subspaces of an In space, and a 

suitably reformulated version of [9, Th. i] gives a characterization of all G so that 

lG can be embedded into LF by functions with disjoint supports. There are also 

subspaces of LF which are isomorphic to l~ so that the unit vectors in l G correspond 

to independent random variables in L r. These subspaces of Lr were investigated 

in [-1]. The structure of general l G subspaces of Lr is, however, still unclear, in 

particular for those functions F whose interval (as defined in Section 4) contains 

the number 2. It is perhaps worthwhile to point out here the major role played 

by 2 (or more precisely by the space 12) in the study of Orlicz function spaces. 

This is evident from the statements of many results as well as from most proofs. 

The main reason for this is the fact that in any separable Orlicz function spaces, 

the Rademacher functions span a subspace isomorphic to 12. In the theory of 

Orlicz sequence spaces, on the other hand, the space 12 plays no special 

role. 

The second result of Section 4 gives a necessary condition for embedding 

isomorphically one Orlicz function space into another Orlicz function space. Our 

main interest in this result stems from the following corollary. If LF is a reflexive 

Orlicz function space which is isomorphic to L~ and the interval associated with 

F does not contain 2, then F and G are equivalent Orlicz functions, that is, L r 

and Lo consist of the same functions. We do not know whether the restriction 

concerning 2 is really necessary. This result exhibits a perhaps unexpected differ- 

ence between Orlicz sequence spaces and Orlicz function spaces. In [8] and [-9] 

(and also Section 3 below) we have exhibited several examples of nonequivalent 

Orlicz functions which generate isomorphic sequence spaces. Thus, an Orlicz 
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sequence space may have many nonequivalent representations as a symmetric 

sequence space. On the other hand, a reflexive Orlicz function space L F (with 2 

not contained in the interval associated with F) has a unique representation as a 

rearrangement-invariant function space on [,0,1]. 

We recall now some definitions concerning Orlicz sequence spaces (basic no- 

tions related to Orlicz function spaces will be reviewed in the beginning of Section 

4). By an Orlicz function F, we mean a convex continuous strictly increasing 

function on [0, ~ )  such that F(0) = 0. For  the study of Orlicz sequence spaces, 

only the values of F near 0 are of importance so that quite often we consider the 

values of F only on [,0, 1]. The function F is said to satisfy the A 2 condition (at 0) 

if supo<x_< 1 F ( 2 x ) / F ( x ) <  co. Unless stated otherwise, we assume that the Orlicz 

functions appearing in this paper satisfy the A 2 condition. For an Orlicz function 

satisfying the/12 condition (at 0), the Orlicz sequence space l e consists of all the 

sequences x = {xi},~176 of reals so that 27=1F( lx ,  l) < oo. The unit ball of 

IF consists of those sequences for which ~ i~1 F(I xi I) < 1. Two such functions, 

F and G are called equivalent (at 0) if A -  1 < F(x) /G(x)  < A for some A > 0 and 

all 0 < x < 1. The spaces lF and IG consist of the same sequences if and only if F 

is equivalent to G (at 0). For an Orlicz function F (which satisfies the A2 condition 

at 0) the set EF, t = {F(sx)/F(s)}o<~<-tis norm compact in C(0, 1) for every t > 0  

(the closure is taken in the norm topology of C(O, 1)). Other norm compact sets 

in C(0, 1) which will be of interest to us are EF= ~t>o EF,t, CF, t = cony Er. t and 

CF = convEF. All these sets are invariant under the action of the flow Tt,  

0 < t < 1, defined by TtH(x) = H(tx) /H(t ) .  An Orlicz function F is called minimal 

if Er.~ has no proper closed subsets which are invariant under the flow Tt, in 

other words, if for every GeEe,1 there is a sequence h such that Tt,G tends uni- 

formly to F. 

A general reference on Orlicz spaces (mainly Orlicz function spaces) is [4]. 

A detailed exposition of the basic properties of Orlicz sequence spaces is given in 

[-5]. 

2. Subspaces of Orlicz sequence spaces which are isomorphic to,rp 

Let F be an Orlicz function which satisfies the A 2 condition at 0. As shown 

in [-8] and [9], the Orlicz functions G such that l G is isomorphic to a subspace 

of l F are exactly those functions which are equivalent to functions in CF. x . It was 

also noted in [-8] that the Schauder-Tychonofl fixed point theorem implies that 



372 J. LINDENSTRAUSS AND L. TZAFRIRI Israel J. Math., 

there is always some p such that xPe CF1. Our main purpose in this section is to 

characterize precisely the values of p such that xPe Ce, 1, that is those p for which 

lp is isomorphic to a subspace of le. 
We shall show that the set of p's such that xP~ Cr.1 coincides with the interval 

[aF, flr] associated with F in several places in the literature (see e.g. [10l). The 

interval is defined by 

~F = sup{p; sup F(tx)/F(t)x p < oo} 
O < x , t ~ l  

fir = inf{p; inf F(tx)/F(t)xP > 0}. 
0 < x . t _  1 

It is clear that for every Orlicz function F satisfying the A 2 condition at 0 

l < ~ < f l ~ < ~  

TaEOREM 1. Let F be an Orlicz function satisfyin# the A 2 condition at O. 

Then the followin# assertions are equivalent: 

1) xP~Cv 

2) x p is equivalent to a function in C~,1 

3) Ip is isomorphic to a subspace of  I r 

4) p~ [=r, fir]. 

PROOF. The implication (1) => (2) is obvious. The equivalence of (2) and (3) 

was proved in [9]. That (2) => (4) is also obvious. Indeed, if p < ~j, and 

if p < r < ~/; then there is a constant C such that F(tx) < CF(t)x' ,  

O < x , t <  1. Hence for all G ~ Cr, I ,G(x)  < Cx ' ,O  < x < 1, and thus 

x p is not equivalent to any function in Cr.1. A similar argument applies to the 

case p > fly. The only implication which remains to be proved is (4)=> (1). 

Our proof of this implication is based on an argument which was suggested 

by A. Pazy. 

If  ~r = tip then the above mentioned fixed point theorem proves the desired 

result. We assume therefore that ~ < p < fir and prove that xPe C~. Since Cr 

is closed, this will show that xP~ Ce also for p = ~v or p = fie. Let f ( x )  = 

F(x)/x p, 0 < x < 1. By our assumption we have SUpo<y~_ l f ( x ) / f ( y )=  oo and 

info<y~x<_~f(x)/f(y) = 0. Hence, for every n there are 0 < u~ < v~ < w~ < 1, 

such that Wn ~ 0 and 

(2.1) nf(u~) <f (v . ) ,  nf(w~) <f(v , ) .  

Let a~ = u~/w~, b~ = v~/w~ and 
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G~(x) = C-~ 1 F(tw,x)t - p- ldt 
n 

where C~ = j-1 F(tw~)t-p-1 dt. Clearly G,e C~.w. for every n. By substituting 

y = tx we get that 

G,(x) = C21x p F(yw,)y-P-~dy.  
~X 

Since IJo  = + I f ,  it follows that 

G~(x) = x p + g~(x) - h,~(x) 

f 
a ~  

(2.3) 9.(x) = C~tx  p F( tw. ) t -P- ld t  ~ Cflx-lanPF(un) 
al a ~ x  

(2.4) h,(x) = C2 txp F( tw,) t -P-  ldt < C 2 i x -  tF~wn). 

Since bn/a, = v~/u, -+ 0 

f f "  
(2.5) C, > f ( tw~) t -P- td t  > b~'F(v,) /2K 

.12 

where K denotes the A2 constant of F.  

By (2.1), (2.3) and (2.5), 

O,(x) < 2Kb~F(u,)/(xa~F(Vn)) = 2Kf(u,,)/xf(v,)  < 2K/nx .  

Similarly by (2.1), (2.4) and (2.5), 

h,(x) <_ 2Kb~F(w,)/xF(v,) = 2 K f  (w,)/xf(v~) <~ 2K/nx .  

It follows from (2.2) that G , ( x ) - .  x p pointwise and thus, by the compactness 

of C~.1, uniformly on [0,1]. Hence xPs CF and this concludes the proof. 

Before giving some immediate consequences of the theorem let us make some 

comments concerning the interval associated with an Orlicz function. Let F 

be an Orlicz function such that le is reflexive. Then, as is well known, (l~)* is 

isomorphic to the Orlicz space l~. where F* is defined by 

F*(y) = sup ( x y -  F(x)) .  
O<x 

The connection between the interval of F and that of F* is given by 

(2.6) ~ - 1 +  fl~-t = 1, ~jT, t + f l /~ l  ~-- 1. 

(2.2) 

where 
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Indeed, assume that F(tx)/F(t) < cx p for some constant c and all x and t .  

Passing to the conjugate functions, we get that (F(t ")/F(t))*(y) >= dy q for some 

d > 0 where p-1 + q-1 = 1. Since 

(F(t .)/F(t))*(y) = F*(F(t)yt-~)/F(t) 

and F*(F(t)/t)/F(t) is bounded away from 0 and ~ ,  it follows that 

F*(sy)/F*(s) > ky q for all s and y and some k > 0. This proves the first equation 

in (2.13) and the second follows by duality. 

Another remark concerning the interval of  F is that it coincides with the one 

introduced by Lindberg [5]. The definition of Lindberg is as follows. For  an 

Orlicz function F define 

a e = l iminf  xF'(x) /F(x) ,  b e = lim sup xF'(x) /F(x) .  
x'-*O x ~ O  

Now put dr = sup a G, be = infa~ where the sup and inf are taken over all G 

which are equivalent to F at 0. We claim that for every F ,  ge = ae and fie = be .  

Indeed, a straightforward computation shows that for every F ,  ae < ge. Since 

~e depends only on the equivalence class of F it follows that 6e < ~e. To prove 

the reverse inequality, take a p < ge, and put g(x) = F(x)/x p, g(0) = 0. Then 

g is continuous on [0,1]  and it follows from the definition of  ct e that 

supx.tg(xt)/y(t ) < ~ .  Let h(x) = SUpo_~r<xg(y) and n ( x )  = f~h(t)tP-~dt.  Then 

H is an Orlicz function equivalent to F and xH'(x) /H(x)  > p for all x and 

thus a n > p .  This proves that d r = d r and that Be = ~e is proved similarly. 

It  should be noted that, in general, there is no function G equivalent to F such 

that a G = ~e and b~ = fir. If, for example, p = a G = b G for some G, then E G 

consists only of x p. This is not necessarily the case if we assume only that  

P = COG = fig (see Example 1 in the next section). 

COP, OLLA~Y 1. Let l e be a reflexive Orlicz sequence space. Then Ip is iso- 
morphic to a subspace of  I r i f  and only i f  Ip is isomorphic to a quotient space 

of  I r . 

PROOF. This follows from Theorem 1 and (2.6). 

COROLLARY 2. Let F and G be Orlicz functions satisfying the A 2 condition 

at O. Then every bounded linear operator f rom l r into l G is compact i f  and 

only i f  ~e > fG. 

PROOF. The " i f "  part is well known. The proof  of  the fact that every operator 

from Ip into l, is compact if p > r works just as well here (see [ 12]; the argument 
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actually goes back to Banach). The " i f "  part is given in a more general context 

in Milman [11]. 

As for the "only i f"  part, assume that p = ~F < fig = r. By Theorem 1 and 

Corollary 1 there is an operator 7"1 from IF onto lp and an isomorphism T2 from 

Ir into IG. Let I be the formal identity map from Ip into It. Then T = T2IT~ is 

a noncompact operator from lE into la. 

3. Minimal Orlicz functions 

As is well known, the Ip spaces have a unique symmetric basis up to equivalence. 

Our first result in this section shows that this property characterizes them among 

the minimal Orlicz spaces. 

THEOREM 2. Let F(x) be a minimal Orlicz function which is not equivalent 
to any x p. Then lr has uncountably many mutually nonequivalent symmetric 
bases. 

PROOF. It follows from the definition of minimality and from Pelczynski's 

decomposition method (cf. [8, p. 389]) that for every G~Er,~, the space l~ 

is isomorphic to l r .  Hence it will be enough to show that Ee, ~ contains uncount- 

ably many mutually nonequivalent functions. 

Assume that there are only countably many equivalence classes in EF,~ and 

let G~ be representatives of these classes (the class containing F will be repre- 

sented by F).  For all integers i and k, set 

A~, k = {H; HeEr ,1 ,  k -1 < H(x)/G,(x) < k for 0 < x  < 1}. 

The sets Ai, k are closed and their union covers EF, 1. By Baire's category theorem, 

there is a pair (i, k) such that As,k contains a (relatively) open set O. By minimality, 

for every H ~ Ee,1 there is a t such that H(tx) /H(t)~0.  Since H(x) is equivalent 

to H(tx)/H(t) it follows that Er, 1 consists of only one equivalence class, i.e., 

all the functions in Er.1 are equivalent to F .  

For every 0 < t < 1 set Bt = {H; H~Er,~,H(tx) /H(t)~ O}. Then B t is open 

and again by minimality, U0<t__<~Bt covers EF, x. By the compactness of Er,~ 

there is a u > 0 such that U,_.t___x Bt = Ev, I.  It follows that for every 0 < s < 1 

there is a u < t < 1 such that F(stx)/F(st)~ O, i.e., k -2 < F(stx)/F(st)F(x) < k 2, 

0 < x < 1. Since t > u, the A2 condition implies that there is some constant 

c > 0 such that for 0 < s, x < 1, c -1 < F(sx)/F(s)F(x) < c. By [13, problem 99] 

it follows that F(x) is equivalent to x p for some p,  contrary to our assumption. 
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REMARK. The concept of a minimal Orlicz space can be generalized in a 

natural way to the setting of general symmetric bases in view of [-9, Th. 4]. 

A symmetric basis {e,},~l of a Banach space X is said to be minimal 

symmetric if every sequence {uj} of the form uj ~PJ+'  = i=pj + l ei with p~ < P2 

< . . . ,  spans a subspace of X which is isomorphic to X.  It is therefore natural 

to ask the following question. Assume that the Banach space X has up to equi- 

valence a unique symmetric basis and that this basis is minimal symmetric. Is 

X isomorphic to c o or to some lp ? 

We now describe a general method of representing Orlicz functions M in a form 

in which the set EM.1 can be easily described. Our main application of this re- 

presentation is in producing some examples of minimal functions. Let F(x) 

and G(x) be two strictly increasing continuous convex functions on [ e - ~ , l ] t  

such that 
F(1) = G(1) = I ,  

xF'(x)/F(x) > F'(1) = G'(1) < xG'(x)/G(x), x e  [e -1 1], 

and 

F(e -x) = e x p ( - p l ) ,  G(e -1) -- exp(-p2) ,  with Pl < P2. 

For  every sequence of  digits 0 = {0(i)}~% t with O(i) equal to 0 or 1, for each i 

we define an Orlicz function M o on ['0, 1] by putting M0(1 ) - 1, Mo(O ) = 0 

and for exp( - i )  _~ t < e x p ( - i  + 1), i = 1, 2,...  

f M o ( e x p ( - i  + 1))F(te'xp(i-1)) if O(i) = 0 
Mo(t) 

[M0(exp(-i  + 1))G(texp(i-1)) if O(i) = 1. 

It is easy to check (cf. [8, Lemma 2-]) that for every 0, Mo is an Orlicz function 

satisfying the A2 condition. 

Let us list some simple properties of the functions M o. The proof of these 

observations is straightforward. 

i) M0(exp ( -k ) )  = e x p ( - k p l  - ( P 2  - P~) Ek=10(i)) for k =  1,2,. . . .  It 

follows in particular that up to equivalence, Mo is determined by Pt,P2 and 0 

and does not depend on the special choice of F and G. 

ii) For two sequences 0 = {0(i)} and ~/= {t/(i)}, the function M o is equivalent 

to M,~ if and only if sup[ Ek=d/(i ) -- Ek=~0(i) l < o~. 
k 

t We chose e - i  simply because of the typographical convenience in writing exp (k) = e k. 
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iii) For fixed F and G, the set of all the functions of the form M0 is a norm 

compact set in C(0, 1). The map 0 ~ Mo is a homeomorphism from {0, 1} ~~ with 

the product topology into C(0, 1). 

iv) Let T be the map defined by TH(x) = H(e- lx) /H(e-~) .  Then 

TMo = Mso where SO(i) = O(i + 1)(i.e. S is the shift by one to the left). 

v) EMo,1 consists of functions equivalent to functions of the form M, where 

r/is a limit (in the topology of pointwise convergence) of  sequences of the form 

{S~O}, i.e. r/is such that for every k there exists an n = n(k) such that r/(i)= 

0 (n + i), i = 1,..., k. Conversely, every such M, belongs to Euo.1. 

Some further properties of Mo which are of interest in the study of EMo are 

given in Propositions 1 and 2. 

PROPOSITION 1. Let P~,P2, 0 and M o be as above. Then 

n + k  

(3.1) ~Mo = Pl q- (P2 - P l ) l iminfk-~(  inf ~ O(i)) 
k ~ o o  n i = n + l  

n + k  

(3.2) fluo = P~ + ( P 2  - -  Pl) l imsupk-~(sup  • O(i)). 
k ~ c o  n i = n + l  

PROOF. It is clear, by the A 2 condition, that in the definition of  ~r for a general 

Orlicz function F it is enough to consider only expressions of  the form 

F ( e x p ( - n  -k ) ) /F(exp(  - n))exp( - kp). In the case of F = M o this expression 

becomes (by observation (i)) 

exp ( -- kpl - (P2 - P l )  

Hence ct~,o is the sup of all the p's for which 

n + k  

~, O(i) + kp).  
i = n + l  

n + k  

supk(p- Pl  - (P~ - P l ) k  - 1  2 O(i)) < oo. 
n,k i = n +  l 

This implies (3.1). The proof of  (3.2) is similar. 

PROPOSITION 2. Let 0 and M o be as above. M o is equivalent to a minimal 

Orlicz function i f  and only i f  there is a constant K such that for  every integer 

k there is an integer n = n(k) with the following property: For every integer s 

there is an m <= n such that 
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"+ J o ( o -  2 o(i) <~ K for j =  l ,2 , . . . , k .  
i = s + m + l  i = 1  

PROOF. Assume first that such a K exists. Let nj  --~ OO be a sequence of integers 

for which t/=limS~J0 exists. Since any block of digits appearing in t/ appears 

also in 0, our assumption will show that for every k there is an l -- I(k) such that 

2 t l ( i ) -  ~, O(i) < g  for j = l , 2 , . . . , k .  
i = 1 + 1  i = 1  

It follows from observation (ii) that for any limiting point z of the sequence 

{sZ(k)t/}~=l the function M~ is equivalent to Mo. By observations (iv) and (v) it 

follows that for every N~EMo,I there is an ~I~EN.1 with 3~r equivalent to Mo. 

Taking in particular N to be minimal, we get a minimal function 3~t equivalent 

to M0. 

Now we prove the converse. Assume that there is a minimal function N such 

that A-1 < N(x)/Mo(x) < A for some A. Assume also that for every integer m 

there is an integer k = k(m) and sequences (sl(m, n))n~ 1 and (s2(m, n))n~=l such 
that 

lim [s2(m , n) - sl(m, n)] = ~ ,  

and for every sl(m, n) < s < s2(m,n) there is a j < k(m) with 

s + j  j I I 

I I>= m 
I l = j + l  t = 1  I 

Fix m and let ~/m be any limit point of the sequence (S~'(m'")O)~= 1. Then M~m ~ EMo,1 
and for every integer t there is a j <= k(m) such that 

t+j ] 
o(i) >_ m .  

It follows from observations (i), (ii) and (v) that for any M~EM~,t there is an 

0 < x =< 1 such that M(x)/Me(x ) is outside the interval [B exp( - m(p2 - Pl)), 

B -~ exp(m(p2 -p~)) ] ,  where B is a constant depending on the A2 constant of M 

but not on m. This however contradicts the minimality of N if A 4 

< B-  1 exp (m(p2 - Pl)). 

Now we consider two examples. Example 1 was already described in [8] and 

[9, Example 3] (the only difference is that here we have replaced 2 by e). 

EXAMPLE 1. We construct a function M0 where 0 is a sequence defined by 

induction simultaneously with another sequence ~/as follows: 0(1) = 1, ~/(1) = 0 and 

for n = 0, 1,2, ... 
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0(2 an -t- i) = O(i), 1 < i < 23"; 0(2 an+x + i) ---- O(i), 1 < i < 23n+1; 

0(2 an+2 + i) = ~/(i), 1 --- i _< 23n+2; ~/(2 an + i) = O(i), 1 <_ i ---23"; 

~1(23n+1+i)=~1(i), 1< i_<23 .+* ;  ~i(23"+2+i)=~1(i), 1<_i_<2 an+2. 

Thus the sequences begin as follows: 

0 = {1 ,1 ,1 ,1 ,0 ,1 ,0 ,1 ,1 ,1 ,1 ,1 ,0 ,1 ,0 ,1 , . . . }  

~/= {0 ,1 ,0 ,1 ,0 ,1 ,0 ,1 ,1 ,1 ,1 ,1 ,0 ,1 ,0 ,1 , . . . } .  

We shall prove that M o is equivalent to a minimal function, that it is not equiv- 

alent to any x p and that its interval consists of the single point pl + 2 ( p 2 - p t  )/3, 

despite the fact that there exists no Orlicz function M equivalent to M o for which 

limx~o xM'(x) /M(x)=pl  + 2(p2-Px)/3. (The first two claims have already been 

proved in [9].  Here we repeat the proofs in the present terminology.) 

For  every n, let A,(resp.Bn) be the block of the first 2 3n digits in 0(resp. ~/). By 

the definition of ~/, both A, + 1 and B n + 1 contain a block equal to A n. Since 0 can be 

written as 0 = CIC2C3... where each block C i is equal either to A,+ 1 or to B,+1, 

it follows that every block of 0 of length >= 3 �9 2 3"+ 3 contains in it either An+ x or 

B,+ 1 and thus the block An. Thus the condition in the statement of Proposition 2 

is satisfied with K = 0 and n(k) = 3 �9 2 3n+a for k < 2 an. This proves that Mo is 

equivalent to a minimal function. 
23n+2 23n 

Clearly r/ = limnS 0 and 0 = limnS r/; hence, M~eEMo,~ and ModEM.,, ,  
23n . 2 n On the other hand, since ~ i=l(O(t) - ~/(i)) -- it follows that Mo is not equi- 

valent to M, while IMo is isomorphic to lM.  Thus Mo is not equivalent to any 

X p . 

In order to compute the interval of M o let us denote by a. (resp. b.) the num- 

ber of  l ' s  in the block An (resp. Bn). Then ao = 1, bo = 0 and 

a.+ 1 = 6an+ 2b.,  bn+ 1 = 4an + 4 b  n n = 0 ,1 ,2 , . - . .  

Easy computations show that lim. a.2- an = lim. bn2- an = 2/3. Let e > 0 be given 

and choose n such that I a.2-,3" _ 2/31 < e  and ] bn 2 -  3 n  - -  2/3 1 < 8 .  Notice that 

an2-an(bn2-3" ) is the density of l ' s  in An, resp. B,; thus in any block from k2 a" 

to (k + 1)2 3", the density of the l ' s  differs from 2/3 by at most ~. Hence if we 

take any block in 0 of  length 1 �9 2 3" then the density of the l 's  in it is between 

( / - 2 ) ( 2 / 3 -  e)/l and ( ( l -2 ) (2 /3  + ~)+ 2)/1. Therefore, for sufficiently large l 

the density is between 2/3 - 2e and 2/3 + 2e. It follows from (3.1) and (3.2) that 

ctuo = flMo = Pl + 2(P2--pl)/3. We have thus an example of  a nontrivial mini- 

mal Orlicz function whose interval is a single point. 
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Our second example will be of  a minimal function whose interval is non- 

degenerate. 

EXAMPLE 2. Let {n j} be a sequence of  positive integers such that 

~]j~ 2 nj-2 =< 1/3. We define two sequences 0 and r / o f  O's and l 's  as follows: 

Let mj = n2 "n2 , ' " ,n i -~  (rex = 1) and let A~ (resp. Bj) denote the block of  the 

first rnj digits of  0 (resp. t/). A1 consists of  the digit 1 and B1 consists of  the 

digit 0. For  j > 1, Aj and Bj are defined inductively by 

Aj+I = A j A j . . . A j B  i (A i appearing n j - i  times) 

Bj+~ = BjBj . . .B jAj  (Bj appearing n j - 1  times). 

The same argument as in Example 1 shows that for this 0, Mo is a minimal 

Orlicz function. The condition in the statement of Proposition 2 is satisfied with 

K = 0 and n(mj_ 2) = 3mj. By the choice of  the nj the density of  the l 's  in Aj 

is larger than I-I j-i--21 (1 - n7 2) _>- 2/3 while the density of the l ' s  in B~ is less than 

1/3. It follows from Proposition 1 that ~Mo < P2 + ( P 2 - p 0 / 3 ,  [IMo > P~ + 

2 @ 2 - p 0 / 3 .  

In spite of  the fact that the space lMo has subspaces isomorphic to Ip for an 

entire interval of  p's, it does not have any Ip as a complemented subspace (a simi- 

lar result for Example 1 was proved in [-9]). In order to prove this, we apply 

[-9, Th. 2] and show that x p is strongly nonequivalent to EMo.X for every p. For 

the sake of  simplicity we shall prove this assertion only under the assumption 

that the nj do not grow too fast, say if nj __< mj = n~nz "" nj-2.  

By the definition of  0 any block of digits in 0 of length (n i + 2)mj has sublocks 

equal to Aj and to Bj. This means that for every integer k there are integers s 

and u ; s, u __< (nj + 1)rn~ such that 

(3.3) Mo(xexp (k - s ) ) /Mo(exp ( - k - s ) )  = Mo(x), e x p ( - m j )  __< x < 1 

(3.4) Mo(x e x p ( -  k -  u))/Mo(exp(- k -  u)) = M~(x), e x p ( -  mi) _< x _< 1. 

Consider now the (nj + 2)rnj points xl = exp( - i), i = 1, ...,(nj + 2)mj. Assume 

that there is an integer k and a constant K such that for i = 1,2,. . . ,  (nj + 2)mj 

and xi = exp ( - i) 

K -  1 < Mo(x ' exp ( - k))/xfMo(exp ( - k)) 
(3.5) 

= M0(exp( - i - k))/exp( - ip)Mo(exp( - k)) < K .  

Let s be such that (3.3) holds for this k. By dividing (3.5) with i = s  + rn~ by (3.5) 

with i = s and then applying (3.3) we get 
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(3.6) K -2 < M0(exp( - m~))/exp( - m~p) <= K 2. 

Similarly it follows from (3.4) and (3.5) that 

(3.7) K -2 _<_ Mn(exp( - mj) ) /exp(  - mjp)< K 2. 

It follows from (3.6) and (3.7) that 

(3.8) K -4  < M0(ex p ( - m j ) ) / M n ( e x p ( - m i )  ) < K 4. 

However, since the density of l ' s  in A s is > 2/3 and in Bj is > 1/3, it follows 

(see observation (i)) that 

(3.9) M0(exp ( - mj))/M~(exp( - mj)) < exp( - (P2 - pl)mj/3).  

By (3.8) and (3.9) logK > ( P 2  - pl)m~/12. Since the number of  points xi we 

used is < 2njm~ < 2m 2 we proved, as desired, the fact that x p is strongly non- 

equivalent to EMol. 

Let us now describe all possible intervals of minimal Orlicz functions. Actually, 

there is only one limitation: if ~=1 and F is minimal then F(x)=x .  Indeed if 

tnF'(tn)/F(tn)~ 1 then the convexity of F implies that F(tnx) /F( tn)~x ,  for 

0 < x < 1 and hence by minimality F(x) = x. However for every 1<~<13< oo 

there is a minimal Orlicz function whose interval is exactly [~,fl]. This is a con- 

sequence of the constructions given in Examples 1 and 2 and the following remark. 

Let p > 1 and let t > (p - 1)/p. The functions F(x) = xP and G(x) = px - p + 1 

satisfy in the interval It,  1] the assumptions which appear in the definition of 

Mo (with t replacing e-  1). For every r > p we can of course choose t such that 

~ ( t )  = t ' .  

To conclude this section, let us justify the remark previously made that the 

functions Mo represent essentially all Orliez functions: Every Orlicz function M 

such that lu is reflexive is equivalent to a function of  the form M o ( i f  in the 

definition of  Mo we replace e- 1 by a suitable t ~ (0,1)). Indeed, since 1M is reflexive, 

we can assume with no loss of generality that for some 1 < p < r < oo and all 

x e (0, 1), p < xM' (x ) /M(x )  < r, and hence t" < M(tx) /M(x)  -< t p, 0 < x, t < 1. 

Choose now t, F and G as in the preceding paragraph so that F(t)= t p, G(t) = t'. 

Now we construct inductively a sequence 0 = {0(i)} as follows: 0(1) = 1 and 

if Mo(t~)t p < M(t n+l) then we set O(n + 1) = 0; otherwise, O(n + 1) = 1. It can be 

easily verified that 

Mo(t ~) < M(t  ~) < tP-'Mo(t~); n = 1,2 . . . . .  

Clearly, Mo is equivalent to M. 



382 J. LINDENSTRAUSS AND L. TAZFRIRI Israel J. Math,, 

4. Orlicz function spaces 

First we give some basic definitions. Let F be an Orlicz function on [0, o0]. 

By L F we denote the space of all measurable functions f on [0,1] such that 

f~ F(2 If(t) l)dt < oo for some 2 > 0. We say that F satisfies the A2 condition at 

oo if sup ~,>=lF(2x)/F(x)< o0. This supremum is called the A 2 constant of F (at o0). 

If  F satisfies the A 2 condition at 0% Lr consists of all the measurable f such that 

f~t(l f( t) l)dt  < o0. The unit ball of Lr  is taken as {f; f~F(If(t)])dt<l }. 
Unless stated otherwise, we shall assume whenever we consider LF that F satisfies 

the A 2 condition at o0. Up to isomorphism, LF is determined by the values of 

F(x) for large x. 

If  we replace the interval [0, 1] on which we integrate F(If(t)  I ) by an arbitrary 

subset of the line with a finite positive measure and consider the function space on 

this set, we clearly do not get anything new. On the other hand, if we replace [0,1] 

by the whole line (or any set of infinite measure), new features enter into the study 

of Orlicz function spaces. In particular, the values of F near ~ as well as near 0 

are important. The case of general Orlicz function spaces (which certainly deserves 

careful study) is not treated here. 

The interval associated with an Orlicz function F at ~ is denoted by [ ~ ,  fl~o] 
and is defined by 

a~o = sup {p; sup F(x)yP/F(xy) < oo} 
1 S x,y 

fl~ = inf{p; inf F(x)yP/F(xy) > 0}. 
l~x,y 

In studying the connection between Orlicz function spaces and Orlicz sequence 

spaces, it is convcnicnt to associate with F some subscts of C(0, I). The set of 

functions G(x) which are of the form lim F(xy,)/F(y,), 0 __< x < i, for some 
n--~ o0 

scqucncc y, ~ oo is denoted by Ef~ Notice that cvcn if F is dcfined only for large 
x, the limit is defined for every x > 0. Wc always have G(0) = 0. The closed 

convex hull of E~ ~ is denoted by C~. If F satisfies the A 2 condition at oo then 

E~ and C~ arc noncmpty compact subsets of C(0, i). An argument similar to 

that given in the proof of Theorem i shows that xPeCr if and only if 

Wc pass now to our first result on function spaces. 

THEOREM 3. An Orlicz function space LF which is not isomorphic to a Hilbert 

space, is not isomorphic to a subspace of a separable Orlicz sequence space la. 
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PROOF. If F does not satisfy the A 2 condition at o% LF is nonseparable and 

there is nothing to prove. We therefore assume that F satisfies A 2 at oo. 

Let r,(t) =signsin2"-2~zt, n = 1,2,... be the Rademacher functions on [0, 1]. 
) c o  The well-known Khintchin inequality implies that the span of the (r,i . = 1 in L f 

is isomorphic to /2 ,  i.e. that for some constant K 

(4.1) K - l (  ~ ) 2 ) ~ <  II ]~ 2 : .  [Iv < K(]~ )2)~ 
n " " 

for every choice of {2.}. The constant K in (4.1)can be chosen to depend only 

on the A2 constant of F, if F is normalized by F(1) = 1 (since this A2 constant 

determines constants C and p so that F(x) < Cx p, x >- 1). It follows that we may 

assume that (4.1) holds with the same K if F is replaced by F(xy)/F(y) for some 

y. Applying this remark to the case where Ym is chosen to satisfy F(ym) = m with 

m being an integer, we get for all choices of {;~.} that 

(4.2) K - l (  ~ ,~2)~ < II Z Xnrr~,. II <= K( ~ 22)§ m = 1,2,... 

where r~,. are the normalized Rademacher functions on [0, m-1],  i.e. r~'.(t) 
m oO =r.(mt) /ym if t < m  -1 and = 0  if t > m  -1. By translating {r1,.}.=1 

by (i - 1)/m, we get the normalized Rademacher sequence {r.~.,}.~ 1 on the inter- 

val [ ( i -  1)/m, i/m]. Trivially (4.2)remains valid if we replace the index 1 in r~,. 

by some fixed i(1 _< i _< m). Observe also that II r~,n 11 = 1 for all i ,m and n. 

Before proceeding with the proof let us recall two simple facts concerning 

Orlicz sequence spaces which will be needed below. 

a) Let H 1 and H 2 be two Orlicz functions on [0,1] with Hi(1 ) = H2(1)= 1. 

Assume that the identity map I from I/h onto ln~ is an isomorphism. Then 

C -1 <H~(x)/H2(x) < C, 0 < x < 1 for some constant C depending only on 

Hill I[ l - t i t  and the A 2 constants of H 1 and H2. 

b) Let H(x) be an Orlicz function and let x = 2 j  ~jej e In (as usual, the ej 

denote the unit vectors). Assume that Co 1 < ~ j  H(] ),j I) < Co for some con- 

stant C o. Then there is a constant D, depending on C o and the A 2 constant of H 

such that D - ' <  = ]1 x ]l = < D. 

Assume now that there is an isomorphism T from LF into lo for some G 

satisfying the A= condition at 0, and let m be an integer. Since w-lim.r~,~ 

= 0 for 1 _<_ i =< m, we may, by a standard procedure, choose subsequences 

n QO _ _  _ _  { i,k}k=l, 1 < i < m, of integers and vectors Xi,k in l G such that all X.k have 

disjoint supports and 
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m r m (4,3) llx,,  r,,,,,kll____2 l < i < m ;  k=l ,2 , . . . .  

The assertion that X~,k have disjoint supports means that 

(4.4) x i , , =  E ?jej, Aa,k ~f ' )Ai~,*~#~ :~ i l = i z  and k l = k z .  
j E A t , k  

(The X~,k, A~,k and ?j depend also on m. For simplicity of notation we did not 

write this explicitly.) Consider now the Orlicz functions Hi,k(X ) = Z G( 17J I x). It 
j ~ A i , k  

follows from (4.3) that {Hi.k(1)} is bounded and bounded away from 0 by constants 

independent of m. Since G satisfies A2, the set {H,k(X)} is totally bounded in C(0, 1) 

and hence, without loss of generality we may assume that Hi(x) = lim Hi,k(x) 
k--~ oo 

exists uniformly on [0,1] for 1 < i < m (otherwise pass to a suitable subsequence). 

From (4.2), (4.3)and (4.4) it follows that the identity map It from In, into Iz is an 

isomorphism with II g, ll [Iz,-~ I1 bounded by a constant independent on i and m. 

Hence by remark (a) above there is a constant C independent of i and m such that 

(4.5) C -~ < Hi(x) /x  2 < C, 0 < x < 1 

Let D be constant, given in remark (b) above, which corresponds to the function G 

and the constant Co = 2C. 

For every 1 < i "~ m choose an integer k(i) such that 

(4.6) 2 -/(i) < 1/2mD, I Hi,k(O(x)-- Hi(x)] < 1/2mC ; 0 < x < 1. 

For simplicity of notation, put q~i = r'm= y~ = Xi,k( o and B~ = A,,kU ). 
t ri ,nl,k(i ), 

Let {2~}~ml be numbers such t h a t ~ . = 1 2  ~ = 1. By (4.3) and (4.6) 

(4.7) ] [ T ( ~  2,~bi)- ~ 2,yi][ < ~ 1 2 , 1 / 2 m D < l / 2 D .  
i = 1  1 = 1  i = 1  

Also, by (4.6) 

(4.8) x 
i= l j~B~ i = 1  

By (4.5) and (4.8) 

H,(l )t, [)1 ~ m 12mC = 112C. 

1/2c c-1 }, g _  1/2c s x 
i = l  i l l  j e B l  

It follows from the choice of D that 

i = l  

m 

= 1  
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and hence by (4.7) 

(4.9) (1/2D)[iTI[ Z II Z2DI[T-11L" 
i = 1  

Each ~ ,  is a function with constant absolute value on [ ( i -  1)/m, i /m] and is 0 

outside this interval. Since Ilfl[ = II If111 for every Z,, it follows from (4.9) 

that for every m there is an operator Um from the m-dimensional Hilbert space into 

the subspace of L, consisting of the functions which are constant on each interval 

of the form [ ( i -  l )m, i /m) ,  such that liUmU [[U~-'I[ is bounded by a constant 

independent of m. In the terminology of [7] this means that L e is a S~ space, i.e. it 

is isomorphic to a Hilbert space. Q. E. D. 

REMARK. The same proof works if we replace Lp by a rearrangement-invariant 

function space on [0,1] provided that the normalized Rademacher functions 

{rm 't oo i.,s, = 1 span a subspace isomorphic to Iz with an isomorphism constant indepen- 

dent of m (it is clearly independent of i). Sufficient conditions for this to happen 

can be deduced from the interpolation theorem of Semenov [14]. On the other 

hand, in Theorem 3 we cannot replace the Orlicz space IG by an arbitrary space 

with a symmetric basis. In fact, those Orlicz function spaces which have an un- 

conditional basis (i.e. the reflexive Orlicz function spaces, cf. [2]) can be embedded 

isomorphically into Banach spaces with symmetric bases (cf. [6]). 

Let F be an Orlicz function and let ~ > 0. The following sets are of importance 

in the study of LF: 

A:" -- L,,  If(t)l "llsll) 

where/~ denotes the gebesgue measure. We prove next a simple generalization of 

a result of Kadec and Pelczynski [3]. 

PROPOSITION 3. Let {f~} be a sequence of  functions with norm 1 in LF. I f  the 

set {.f,} is not contained in A~ for  some ~ > O, then there is a subsequence of  

{f,} which is equivalent to the unit vector basis in la for  some G~ C~. 

PROOF. A rather well-known procedure (see [3] for details) shows that if for 

every e > 0 there is an n = n(~) with f ,  ~ A~, then there is a subsequence {f,~}k~_-~ 

of {f,} consisting of functions having "almost disjoint" supports. That is, there 

exist gkeLFsuch that llgk--f.kil =< 2 -k for every k, and the sets A k =  {t;gk(t ) 

0} are mutually disjoint. Since lt(Ak)--* 0 there is no loss of generality in 

assuming that Yk = inf{I Ok(t)I' t e Ag} tends to oo (if we replace Ok(t) by 0 when- 
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ever [gk(t)[ is smaller than a suitably chosen y~, we change gk only by a small 

amount in the norm of Lr). Since [[fn II = 1 we may assume also that II lJ = 1 

for all k. Consider the functions Hk(X ) = f~ t ( x  [ gg(t)])dt, o < x < 1. Since HR(1 ) 

= 1 for every k, it follows that HR(X) is in the convex hull of  (F(xy)/F(y)}y>=y k. 

Since the {Hk (x)} form a totally bounded set in C(0, 1), there is a subsequence (Hkj) 

of{Hk} which converges to some G~C~.  We assume, as we may, that 

IHk~(X) -- G(x)[ < 2 - j ,  0 < x < 1. It easily follows from this that the unit vector 

basis of  I o is equivalent to the sequence {gk~} and thus to the subsequence {f,~j} 

of  the given sequence in LF. 

PROPOSmON 4. Let F and G be Orlicz functions. Then, there is an isomor- 

phism T from la into Le which takes the unit vector basis in l a into functions 

in L~ with mutually disjoint supports if  and only if G is equivalent to a function 

in C~. I f  G ~ E~ then there exists such an isomorphism T for which, in addition, 

Tl~ is complemented in Lf. 

PROOF. The "only if"  part has already been proved in the proof of Proposition 

3. The proof of the " i f "  part of the first sentence is identical to the proof of  

[9, Th. 1]. If  G e E~ then the isomorphism T which is obtained in that proof 

maps the unit vectors of lF into normalized characteristic functions of disjoint sub- 

sets of [0,1]. Hence there is a conditional expectation which projects Lr onto Tla. 

> 2. Then Ip is isomorphic COROLLARY. Let F be an Orlicz function with er = 

to a subspace of L~ i f  and only if  either p = 2 or pc [cr176 

PROOF. Assume that L e has a subspace X isomorphic to lp. We observe first 

that i f X ~ A f f o r  some e > 0 ,  then p=2 .  Indeed since ct; > 2  there is for any 

r < 2 a constant K, such that F(x) > K,x" for x > 1. Hence tbr every ~ > 0 and 

every r < 2 there is a constant C = C(r, e) such that for f ~  A~, C-1 [If]I, __< [[f[[F 

__< C []f[]," Thus our given X is isomorphic to a subspace of  L, for every r < 2 and 

this shows that p = 2. If  there is no e > 0 for which X = A~ then by Proposition 3, 

X has a subspace isomorphic to I G for some G e C~TIn this case we get that 
co oo 

P ~ [ ~ ,  fl~ ]. 
Conversely, if p e [ ~ ,  tip] then xPr Cff and hence, by Proposition 4, Ip is iso- 

morphic to a subspace of Le. A subspace of Lr isomorphic to 12 is obtained by 

taking the Rademacher functions. 

We consider now the question of  embedding one Orlicz function space into 

another. Several interesting sufficient conditions were given by Bretagnolle and 

Dacunha-Castelle [1]. We give here a necessary condition. 
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THEOREM 4. Let F and G be Orlicz functions. Assume that fl~ < 2 and that 

La is isomorphic to a subspace of Lv. Then sup F(x)/G(x) < ao. 
x~_l 

PROOF. We shall denote the norms in Lr (resp. Lo) by I1 11~ (resp. !l'llo). Let 

m be an integer and denote by ~ t," the characteristic function of [ ( i -  1)/m, i/m], 

i =  1,2,. . . ,m. P u t T " =  II~,."llo, i.e. C(W;,')--m. Let T be an isomorphism 

from Lo into Lr and put fi." = ?~,t T~,." �9 Then II T- ' i I - '  =< IlS," II~ --< 11 T II and 
hence, since F satisfies A 2 at 0% we get that 

(4.10) C-1 < Jo  F(]f."(t)])dt < C, 1 _<i<_ m m = 1,2,... 

for some constant C independent of i and m. For every choice of signs 0~ 

(0~ = _ 1) we have 

(4.11) e-~llr-'ll z I1 ~ ~ r ~Z 
i = 1  i=I 

o,+," I1~ s ~m:ll z II. 

As shown in [ 1, p. 470] there is a constant K depending only on the function F 

(and thus independent of m) such that 

f0' (I ~ 0/,.(01) a,)s x ~ F(IS,.(,,I,dt. 
i = 1  i = 1  

where E denotes the average of all possible 2" choices of 0 = {0~}. In particular, 

for at least one-half of the 2" choices of signs, we have 

(4.12, f] F(l ~" ~ ,=, f: F(I/''"(',l)at" 
A simple combinatorial argument shows therefore that we can choose inductively 

the signs{0~'}~%l for m=2", n = l ,  2,--- so that (4.12)holds with 0 i =  

07' and so that the functions 

~ . =  ~ O~'tk,,, . ( m = 2 " )  n = l , 2 , . . .  
i = i  

are asymptotically orthogonal in the sense that for every k there is an n(k) such 

that 

(4.13) [f j  Oj(t)O,(t)dt[ < 2 -k, 1 <=j N_ k, n >=n(k). 
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It follows from (4.13), the fact that ]$,(t) ] ---- 1, and Khintchiue's inequality that 

for every sequence nj tending sufficiently fast to ~ ,  the span of {$nj} in Lo is 

isomorphic to 12. 

Put hn = ?2. ~ T$,  ~ Lv, n = 1, 2, .. . .  Notice that there is an e > 0 such that h, ~ A~ 

for every n. Indeed, otherwise it would follow from Proposition 3 that for some 

sequence {n j}, the functions ?2,jh,j: j = 1,2, ... are equivalent to the unit vector 

basis of IH for some H ~ C~. By the remark in the preceding paragraph and the 

fact that T is an isomorphism, it follows that In is isomorphic to 12. However, 

since fl~ < 2 the set C~ ~ contains no function equivalent to x 2 and we arrive at a 

contradiction. 

Since hn ~ A~, n = 1, 2,... we have 

f0 
1 

r(lh.(t)l)dt n = 1,2,.. . .  

By (4.10) and (4.12) it follows that 

[Ih. II ) ___ 2CK2" 

and thus by (4.11) 

eF(e 172-II Ii) =< 2CKZL 

Since F satisfies the A2 condition it follows that for some constant KI independent 

of  n, F(?2.1) < K12". Thus if2n < G(x) < 2 "+1 then x < 72.~, and hence 

F(x) <= Kx2 ~+~ __< 2K~a(x) 

which concludes the proof of the theorem. 

COROLLARY. Let F and G be two reflexive Orlicz functions such that 

2 r176 I l L  r is isomorphic to L o then F is equivalent to G at oo. 

PROOF. Assume first that fl~o < 2. By passing to the dual and using Proposition 

4 and its Corollary, it follows that fl~ -- fl~'. Hence by using twice Theorem 4 it 

follows that F is equivalent to G. The case ~ > 2 is obtained from the previous 

one by duality. 

REMARKS. We do not know whether the Corollary is true without the assump- 

tion 2 r fl~ ]. The theorem clearly fails without assuming fl~ < 2 since L 2 is 

isomorphic to a subspace of Lv for every p. 
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