ON ORLICZ SEQUENCE SPACES III

BY
J. LINDENSTRAUSS AND L. TZAFRIRI

ABSTRACT

It is proved that the set of p’s such that lp is isomorphic to a subspace of a
given Orlicz space [/ forms an interval. Some examples and properties of
minimal Orlicz sequence spaces are present:d, It is proved that an Orlicz
function space (different from /) is not isomorphic to a subspace of an Orlicz
sequence space. Finally it is shown (under a certain restriction) that if two
Orlicz function spaces are isomorphic, then they are idzntical (i.e. consist of
the same functions).

1. Introduction

As the title of the paper indicates, this is a continuation of two previous papers
([8],[9]). However, apart from references to some results in the previous paperss
this paper is quite self-contained.

In Section 2 we consider the set of p’s for which I, is isomorphic to a subspace
of an Orlicz space Ir. We show that this set constitutes a closed interval (which
may reduce to a single point). This interval is identical to the interval associated
with an Orlicz space in various places in the literature. As a consequence we get
that I, is isomorphic to a subspace of a reflexive Orlicz space I if and only if it
is isomorphic to a quotient space of Ip. (In general I, need not, however, be
isomorphic to a complemented subspace of I, as examples given in [9] and
Section 3 below show.) This result exhibits a special property of /, spaces: simple
examples (given in [9]) show that an Orlicz space /; may be isomorphic to a
subspace of a reflexive Orlicz space I without [; being a quotient space of Ij.
As an easy application of this result concerning [, subspaces of Orlicz spaces, we
show that a well-known sufficient condition for every operator from Iy to /4 to be
compact is also a necessary condition.
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Section 3 is devoted mainly to the study of minimal Orlicz sequence spaces.
Minimal Orlicz spaces were introduced in [9] (their definition is given at the end
of this introduction). As far as complemented subspaces are concerned, these
spaces resemble the [, spaces. It might even be true that like the I, spaces, the
minimal Orlicz sequence spaces are prime spaces, i.e. that every complemented
subspace of such an X is either isomorphic to X itself or it is finite-dimensional.
The first result in Section 3 is a characterization of the [, spaces among the minimal
Orlicz sequence spaces: a minimal Orlicz sequence space is isomorphic to an [,
space if and only if it has a unique symmetric basis, up to equivalence.

Section 3 also describes a way of representing an (essentially) general Orlicz
function in a convenient form. Using this representation we give an example of
a minimal Orlicz sequence space whose interval is non degenerate and an example
of a minimal Orlicz sequence space which is not isomorphic to [, but whose
interval consists of a single point.

A remark should be made concerning the general nature of Sections 2 and 3.
The results quoted above are in the general spirit of Banach space theory, The
proofs given here do not, however, involve the investigation of Banach spaces. In
[8] and [9] several Banach space theoretic properties of /p were translated into
properties of the flow T, defined by T,F(x) = F(tx)/F(t). Sections 2 and 3 are
mainly concerned with a direct investigation of the properties of this flow. In
many places the argument resembles elementary and standard reasonings in
topological dynamics. We do not make explicit use of results from topological
dynamics since our setting is slightly different from the usual one (mainly because
we identify equivalent Orlicz functions).

Another general remark concerning Sections 2 and 3 is this: we assume through-
out that the function F generating the flow is convex. In most of the arguments,
the convexity of F does not play any role (of course, in studying nonconvex F
we have to allow also exponents p with 0 < p <1). Since for nonconvex F
the sequence space Iz is not a Banach space, we have not pursued this possible
generalization of the results of Sections 2 and 3.

The last section of this paper, Section 4, contains some results on Orlicz function
spaces Ly and their relation to Orlicz sequence spaces. All the Orlicz function
spaces we consider here are on the unit interval [0,1] endowed with the usual
Lebesgue measure on it. The structure of Orlicz function spaces is naturally far
more complicated than that of Orlicz sequence spaces. Some very interesting
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results on Orlicz function spaces were proved by probabilistic methods by Bretag-
nolle and Dacunha-Castelle [1]. Our results complement some points in their
work.

The first result we prove in Section 4 is that unless Lgis a Hilbert space (i.e.
F(x) is equivalent at co to x?) the space Ly cannot be embedded isomorphically
in a separable Orlicz sequence space, The reverse question concerning the embed-
ding of an Orlicz sequence space into an Orlicz function space is not yet complete-
ly settled. Though we shall not directly discuss this question in Section 4, let us
make here some comments concerning it. In an Orlicz function space Ly there
are subspaces isomorphic to I; so that the unit vectors in I; correspond to
functions in Ly which have disjoint supports. These spaces l; are easy to classify.
The situation here is very similar to that of I; subspaces of an I space, and a
suitably reformulated version of [9, Th. 1] gives a characterization of all G so that
I, can be embedded into Ly by functions with disjoint supports. There are also
subspaces of Ly which are isomorphic to /g so that the unit vectors in I ; correspond
to independent random variables in Ly, These subspaces of L were investigated
in [1]. The structure of general [; subspaces of Ly is, however, still unclear, in
particular for those functions F whose interval (as defined in Section 4) contains
the number 2. It is perhaps worthwhile to point out here the major role played
by 2 (or more precisely by the space I,) in the study of Orlicz function spaces.
This is evident from the statements of many results as well as from most proofs.
The main reason for this is the fact that in any separable Orlicz function spaces,
the Rademacher functions span a subspace isomorphic to I,. In the theory of
Orlicz sequence spaces, on the other hand, the space I, plays no special
role,

The second result of Section 4 gives a necessary condition for embedding
isomorphically one Orlicz function space into another Orlicz function space. Our
main interest in this result stems from the following corollary. If Ly is a reflexive
Orlicz function space which is isomorphic to L, and the interval associated with
F does not contain 2, then F and G are equivalent Orlicz functions, that is, L
and L consist of the same functions. We do not know whether the restriction
concerning 2 is really necessary. This result exhibits a perhaps unexpected differ-
ence between Orlicz sequence spaces and Orlicz function spaces. In [8] and [9]
(and also Section 3 below) we have exhibited several examples of nonequivalent
Orlicz functions which generate isomorphic sequence spaces. Thus, an Orlicz
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sequence space may have many nonequivalent representations as a symmetric
sequence space. On the other hand, a reflexive Orlicz functicn space Ly (with 2
not contained in the interval associated with F) has a unique representation as a
rearrangement-invariant function space on [0,1].

We recall now some definitions concerning Otlicz sequence spaces (basic no-
tions related to Orlicz function spaces will be reviewed in the beginning of Section
4). By an Orlicz function F, we mean a convex continuous strictly increasing
function on [0, c0) such that F(0) = 0. For the study of Orlicz sequence spaces,
only the values of F near O are of importance so that quite often we consider the
values of F only on [0, 1]. The function F is said to satisfy the 4, condition (at 0)
if supg<y<1 F(2x)/F(x) < co. Unless stated otherwise, we assume that the Orlicz
functions appearing in this paper satisfy the 4 , condition. For an Orlicz function
satisfying the 4, condition (at 0), the Orlicz sequence space I, consists of all the
sequences x = {x;}i%, of reals so that ¥%., F(|x;]) < co. The unit ball of
Ip consists of those sequences for which X7, F(| X; |) £ 1. Two such functions,
F and G are called equivalent (at 0) if A= < F(x)/G(x) < A for some 4 > 0 and
all 0 < x < 1. The spaces I and I; consist of the same sequences if and only if F
is equivalent to G (at 0). For an Orlicz function F (which satisfies the 4, condition
at 0) the set Ey,, = {F(sx)/F(s)}o<s<is norm compact in C(0, 1) for every >0
(the closure is taken in the norm topology of C(0, 1)). Other norm compact sets
in C(0, 1) which will be of interest to us are Eg= )50 Ep,,Cp,, = c_on—vEF,, and
Cy = convEg. All these sets are invariant under the action of the flow T;
0 < t £ 1, defined by T,H(x) = H(tx)/H(t). An Orlicz function F is called minimal
if Ep,; has no proper closed subsets which are invariant under the flow T, in
other words, if for every G e Ep,; there is a sequence ¢; such that T,,G tends uni-
formly to F.

A general reference on Orlicz spaces (mainly Orlicz function spaces) is [4].
A detailed exposition of the basic properties of Orlicz sequence spaces is given in

[5]-
2. Subspaces of Orlicz sequence spaces which are isomorphic to!,

Let F be an Orlicz function which satisfies the A, condition at 0. As shown
in [8] and [9], the Orlicz functions G such that I is isomorphic to a subspace
of I are exactly those functions which are equivalent to functions in Cg ;. It was
also noted in [8] that the Schauder-Tychonofl fixed point theorem implies that
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there is always some p such that x? € Cg ;. Our main purpose in this section is to
characterize precisely the values of p such that x?e Cy ; , that is those p for which

1, is isomorphic to a subspace of /r.
We shall show that the set of p’s such that x? e Cy , coincides with the interval

[, Br] associated with F in several places in the literature (see e.g. [10]). The
interval is defined by

ap = sup{p; sup F(x)/F(f)x? < o}

O0<x051

Br = inf{p; inf F(tx)/F()x? > 0}.
0

<xts1

It is clear that for every Orlicz function F satisfying the A, condition at 0
1SS fp<.

THEOREM 1. Let F be an Orlicz function satisfying the A, condition at 0.
Then the following assertions are equivalent:

1) xPeCg

2) xP is equivalent to a function in Cp

3) 1, is isomorphic to a subspace of Ip

4) pelopBel.

Proor. The implication (1) = (2) is obvious. The equivalence of (2) and (3)
was proved in [9]. That (2) = (4) is also obvious. Indeed, if p < o and
if p<r < a then there is a constant C such that F(tx) < CF(O)x',
0<x,t < 1. Hence for all G € Cp;,G(x) £ Cx",0 £ x <1, and thus
xP is not equivalent to any function in Cp,. A similar argument applies to the
case p > Br. The only implication which remains to be proved is (4) = (1).
Our proof of this implication is based on an argument which was suggested
by A. Pazy.

If ap = B then the above mentioned fixed point theorem proves the desired
result. We assume therefore that ap < p < f and prove that x?e Cp. Since Cp
is closed, this will show that x?e C; also for p = ap or p = B. Let f(x) =
F(x)/x?, 0 <x £ 1. By our assumption we have supy<,<x<1/(x)/f(y)= o and
infy <, <x<1/(x)/f(y) = 0. Hence, for every n there are 0 <u, <v,<w,<1,
such that w, - Oand

2.1 nf(u,) <f(v), nfw,) <flvn).

Let a, = u,/w,, b, = v,/w, and
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1
G(x)=C;! f F(tw,x)t™?~'dt
dn
where C, = j,,‘ F(tw)t™?~! dt. Clearly G,e Cp,, for every n. By substituting

y = tx we get that

G,(x) = C'x? f FQyw)y™?~"dy.

a.

Since [§ .= [, + fir.— [1, it follows that

2.2 G(x) = xP + g,(x) — h,(x)
where
(2.3 g.(x) = C;'x? f "F(tw,,)t"’"dt < C7 ' a PF®u,)
1
2.9 h(x) = C;'xP f Fitw)t™P~'dt < C;'x"'Fuw,).
Since b,[a, = v,ju, - 0
b,
(2.5 C, = f F(tw)t™?~'dt = b F(u,)2K
bnf2

where K denotes the A, constant of F,
By (2.1), (2.3) and (2.5),

gu(x) £ 2KbF(u,)/(xa; F(v,)) = 2Kf(u,)/xf(v,) < 2K|nx.
Similarly by (2.1), (2.4) and (2.5),

h(x) £ 2KbyF(w,)/xF(v,) = 2K/ (w,)/x/(v,) < 2K]nx.
It follows from (2.2) that G,(x) —» x? pointwise and thus, by the compactness
of Cp 4, uniformly on [0,1]. Hence x? € C and this concludes the proof,

Before giving some immediate consequences of the theorem let us make some
comments concerning the interval associated with an Orlicz function. Let F
be an Orlicz function such that I is reflexive. Then, as is well known, (Iz)* is
isomorphic to the Orlicz space /g« where F* is defined by

F*(y) = sup (xy — F(x)).

O0<x

The connection between the interval of F and that of F* is given by

(2.6) Bt =1, apt + B = 1.
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Indeed, assume that F(tx)/F(t) < cx? for some constant ¢ and all x and ¢.
Passing to the conjugate functions, we get that (F(z -)/F(1))*(y) = dy? for some
d>0 where p' + 47" = 1. Since

(F(t )FO)*(y) = FXF@yt~1)F(®)
and F*(F(t)/t)/F(t) is bounded away from 0 and oo, it follows that
F*(sy)/F*(s)> ky?for all s and y and some k > 0. This proves the first equation
in (2.13) and the second follows by duality.

Another remark concerning the interval of F is that it coincides with the one
introduced by Lindberg [5]. The definition of Lindterg is as follows. For an
Orlicz function F define

ap = liminf xF'(x)/F(x), br = lim sup xF'(x)/F(x).

x-0 x—0

Now put dp = supag, by = infa, where the sup and inf are taken over all G
which are equivalent to F at 0. We claim that for every F, ay = dr and By = bg.
Indeed, a straightforward computation shows that for every F, ap < ap. Since
o depends only on the equivalence class of F it follows that dy < ag. To prove
the reverse inequality, take a p <y, and put g(x) = F(x)/x?, g(0) = 0. Then
g is continuous on [0,1] and it follows from the definition of o that
sup, g (x1)/g(t) < 0o . Let h(x) = supy<,<,9(») and H(x) = [5h(t)t?~'dt. Then
H is an Orlicz function equivalent to F and xH’'(x)/H(x) = p for all x and
thus ay = p. This proves that oy = dp and that B, = by is proved similarly.
It should be noted that, in general, there is no function G equivalent to F such
that a; = ap and b = fg. If, for example, p = a; = b for some G, then E
consists only of xP. This is not necessarily the case if we assume only that
p = og = Bg (see Example 1 in the next section).

COROLLARY 1. Let Iy be a reflexive Orlicz sequence space. Then I, is iso-
morphic to a subspace of lg if and only if |, is isomorphic to a quotient space
of lp.

Proor. This follows from Theorem 1 and (2.6).

CoROLLARY 2. Let F and G be Orlicz functions satisfying the A, condition
at 0. Then every bounded linear operator from lp into l; is compact if and
only if ap> B¢ .

Proor. The “if” part is well known. The proof of the fact that every operator
from I, into I, is compact if p > r works just as well here (see [12]; the argument
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actually goes back to Banach). The “‘if”” part is given in a more general context
in Milman [11].

As for the “‘only if” part, assume that p = oy < f; = r. By Theorem 1 and
Corollary 1 there is an operator T from ¢ onto [, and an isomorphism T, from
l, into ;. Let I be the formal identity map from [, into I,. Then T = T,IT, is

a noncompact operator from I, into I;.

3. Minimal Orlicz functions

As is well known, the I, spaces have a unique symmetric basis up to equivalence.
Our first result in this section shows that this property characterizes them among
the minimal Orlicz spaces.

THEOREM 2. Let F(x) be a minimal Orlicz function which is not equivalent
to any xP. Then I has uncountably many mutually nonequivalent symmetric
bases.

Proor. It follows from the definition of minimality and from Pelczynski’s
decomposition method (cf. [8, p. 389]) that for every Ge E,;, the space g
is isomorphic to Ip. Hence it will be enough to show that Eg,; contains uncount-
ably many mutually nonequivalent functions.

Assume that there are only countably many equivalence classes in Eg,; and
let G; be representatives of these classes (the class containing F will be repre-
sented by F). For all integers i and k, set

A= {H; HeEp,, k= < H(x)/G{(x) < k for 0 <x < 1}.

The sets 4; ; are closed and their union covers Ey ; . By Baire’s category theorem,
there is a pair (i, k) such that 4; , contains a (relatively) open set 0. By minimality,
for every H e E; there is a ¢t such that H(tx)/H(t) 0. Since H(x) is equivalent
to H(tx)/H(?) it follows that Ep , consists of only one equivalence class, i.e.,
all the functions in Ej,; are equivalent to F.

For every 0 <t < 1 set B, = {H; HeEy,,,H(tx)/H()e O}. Then B, is open
and again by minimality, Uy<,< B, covers Eg . By the compactness of Eg,
there is a u > 0 such that U, ., <, B, = Eg; . It follows that for every 0 <s < 1
there is a u < t < 1 such that F(stx)/F(st)e 0, i.e., k=2 £ F(stx)/F(st)F(x) £ k?,
0<x <1, Since t = u, the A, condition implies that there is some constant
c¢>0suchthatfor0<s,x < 1,c™! £ F(sx)/F(s)F(x) £ c. By [13, problem 99]
it follows that F(x) is equivalent to x? for some p, contrary to our assumption,
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ReMARK. The concept of a minimal Orlicz space can be generalized in a
natural way to the setting of general symmetric bases in view of [9, Th. 4].
A symmetric basis {e};2; of a Banach space X is said to be minimal
symmetric if every sequence {u;} of the form u; = X[I}!, e with p; <p,
< -+, spans a subspace of X which is isomorphic to X . It is therefore natural
to ask the following question. Assume that the Banach space X has up to equi-
valence a unique symmetric basis and that this basis is minimal symmetric. Is
X isomorphic to ¢, or to some 1, ?

We now describe a general method of representing Orlicz functions M in a form
in which the set E,, ; can be easily described. Our main application of this re-
presentation is in producing some examples of minimal functions. Let F(x)
and G(x) be two strictly increasing continuous convex functions on [e~*, 1]t

such that
F=6)=1,

xF'(x)[F(x) = F'(1) = G'(1) £ xG'(x)/G(x), xe[e~! 1],
and

F(e™') = exp(~p;), G(e™!) = exp(—p,), with p, <p,.
For every sequence of digits 8 = {8(i)}7-, with 6(i) equal to 0 or 1, for each i
we define an Orlicz function M, on [0,1] by putting My(1) = 1, M,0) =0
and for exp(—i) £t <exp(—i+1), i=12,--
M,(t) = IM,(exp(—l + D)F(texp(i—1)) if 68() =0
(My(exp(—i + 1))G(texp(i—1)) if 6(i) = 1.
It is easy to check (cf. [8, Lemma 2]) that for every 6, M, is an Orlicz function
satisfying the A, condition.
Let us list some simple properties of the functions M, The proof of these
observations is straightforward.

i) Myexp(—k)) = exp(—kp, —(p; — p)) X5-100)) for k=1,2, - It
follows in particular that up to equivalence, M, is determined by p,,p, and 0
and does not depend on the special choice of F and G.

if) For two sequences 8 = {6(i)} and n = {n(i)}, the function M, is equivalent
to M, if and only if sup | Z%.,n(i) — Z%.,0()]| < co.

k

T Wechose e~! simply because of the typographical convenience in writing exp (k) = e.
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iii) For fixed F and G, the set of all the functions of the form M, is a norm
compact set in C(0,1). The map 6 — M, is a homeomorphism from {0, 1}RO with
the product topology into C(0,1).

iv) Let T be the map defined by TH(x) = H(e~!x)/H(e~!). Then
TM, = Mg, where SO(i) = 0(i + 1)(i.e. S is the shift by one to the left).
V) E,, . consists of functions equivalent to functions of the form M, where
# is a limit (in the topology of pointwise convergence) of sequences of the form
{S™6},i.e.nissuch that for every k there exists an n = n(k) such that 5(i) =
6(n + i), i =1,--, k. Conversely, every such M, belongs to E,, ;.

Some further properties of M, which are of interest in the study of E,, are
given in Propositions 1 and 2,

ProrosiTION 1. Let p,,p,, 8 and M, be as above. Then

n+k

3.D Uy, = Py + (P2 — p)liminfk=1(inf X 6(i)
k=0 n i=n+1
n+k
(3.2 Buo = 1 + (p, — p)limsupk~=t(sup X 6(i)).
k= n i=n+1

ProoF. It is clear, by the A, condition, that in the definition of a, for a general
Orlicz function F it is enough to consider only expressions of the form
F (exp(—n —k))/F(exp( — n))exp( — kp). In the case of F = M, this expression
becomes (by observation (i)

n+tk
exp(—kp, —(p2—p)) X . 0(i) + kp).
i=n+
Hence ay,, is the sup of all the p’s for which
nt+k
SUpk(p— py = (P2 — Pk~ )y ) < .
n, i=n+

This implies (3.1). The proof of (3.2) is similar.

PrOPOSITION 2. Let 8 and M, be as above. M, is equivalent to a minimal
Orlicz function if and only if there is a constant K such that for every integer
k there is an integer n = n(k) with the following property: For every integer s
there is an m £ n such that
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stm+j

2 00) — Z 0G) | £ K for j=1,2,-k.

i=s+m+1

PROOF. Assume first that such a K exists. Let n; — co be a sequence of integers
for which # =1im S™6 exists. Since any block of digits appearing in 5 appears
also in 6, our assumption will show that for every k there is an ! = I(k) such that

I+j

2y — Z 0G) | £K for j=1,2,-,k.

i=I+1

It follows from observation (ii) that for any limiting point 7 of the sequence
{S'"®n}>., the function M, is equivalent to M,. By observations (iv) and (v) it
follows that for every NeE,,,,, there is an Me Ey, with M equivalent to M,.
Taking in particular N to be minimal, we get a minimal function M equivalent
to M,.

Now we prove the converse. Assume that there is a minimal function N such
that 4-1 < N(x)[My(x) £ A for some A. Assume also that for every integer m

there is an integer k = k(m) and sequences {s,(m,n)}*-, and {s,(m,n)}y=, such
that

lim [s,(m,n) — s,(m,n)] = oo,

h—=w

and for every s,(m,n) £ s < s,(m,n) there is a j £ k(m) with
s+j J
Y 00— 2 66) | >m.

i=1

i=j+1

Fix m and let 77,, be any limit point of the sequence {S*'™"9}°,. Then M, € Ey, ,
and for every integer ¢ there is a j < k(m) such that

t+j

) ﬂm(l)— 2 0@ | z m.

i=t+1

It follows from observations (i), (ii) and (v) that for any M € E, ., there is an
0 < x =1 such that M(x)/M,(x) is outside the interval [B exp( — m(p, — py)),
B~texp(m(p, — p;))], where B is a constant depending on the A, constant of M
but not on m. This however contradicts the minimality of N if 4*
< B~"exp(m(p, — p1))-

Now we consider two examples. Example 1 was already described in[8]and
[9, Example 3] (the only difference is that here we have replaced 2 by e).

ExAMPLE 1. We construct a function M, where 6 is a sequence defined by

induction simultaneously with another sequence # as follows: (1) = 1, (1) = O and
for n=0,1,2,--
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02" +1) = 0(0), 1 1 52%; 02+ +0) = 6(), 1 S0 52+,
BR324 i) = i), 1iS2m+2 g2 4 i)=6(), 15i<2
N D) =), TSIS2U Q@) =a(), SIS0

Thus the sequences begin as follows:
6 ={1,1,1,1,0,1,0,1,1,1,1,1,0,1,0,1, ---}
7 = {0,1,0,1,0,1,0,1,1,1,1,1,0,1,0,1,---}.

We shall prove that M, is equivalent to a minimal function, that it is not equiv-
alent to any x? and that its interval consists of the single point p, + 2(p,—p,) /3,
despite the fact that there exists no Orlicz function M equivalent to M, for which
lim, o xM'(x)/M(x)=p, + 2(p,— p1) /3. (The first two claims have already been
proved in [9]. Here we repeat the proofs in the present terminology.)

For every n,let A,(resp.B,) be the block of the first 23" digits in O(resp.n). By
the definition of , both A, ; and B, contain a block equal to 4,. Since 8 can be
written as § = C,C,C; --+ where each block C; is equal either to 4,,, or to B,
it follows that every block of 6 of length = 3 - 23#+3 contains in it either 4,,, or
B, ., and thus the block A4,. Thus the condition in the statement of Proposition 2
is satisfied with K =0 and n(k) = 3 - 23*+3 for k < 23". This proves that M, is
equivalent to a minimal function.

Clearly n = 1im,,S23"+20 and 0 = lim,,SZLh; hence, M, € Ey, ; and MyeEy, ¢,
On the other hand, since X 22(8(i) — n(i)) = 2" it follows that M, is not equi-
valent to M, while I, is isomorphic to Iy, . Thus M, is not equivalent to any
x?.

In order to compute the interval of M, let us denote by a, (resp. b,) the num-
ber of 1’s in the block A4, (resp. B,). Then ay = 1, by = 0 and

a,41 = 6a,+2b,, b, = 4a,+ 4b, n=0,1,2,.-.

Easy computations show that lim, ¢,2 %" = lim, 5,273" = 2/3. Let ¢ > 0 be given
and choose n such that |a,27>" — 2/3| <& and |b,27*"— 2/3| < &. Notice that
a,2”*"(b,27%") is the density of 1’s in A4,, resp. B,; thus in any block from k23"
to (k + 1)23", the density of the 1’s differs from 2/3 by at most &. Hence if we
take any block in 0 of length I - 23" then the density of the 1’s in it is between
(1-2)(2/3 =€)/l and ((1—2)(2/3 + &) + 2)/l. Therefore, for sufficiently large !
the density is between 2/3 — 2¢ and 2/3 + 2¢. It follows from (3.1) and (3.2) that
U = By, = p1 + 2(p,—p,)/3. We have thus an example of a nontrivial mini-
mal Orlicz function whose interval is a single point.
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Our second example will be of a minimal function whose interval is non-
degenerate.

ExaMPLE 2. Let {n;} be a sequence of positive integers such that
DI nj"1 < 1/3. We define two sequences 0 and # of 0’s and 1’s as follows:
Let m; = ny-ny,+,n;_; (my = 1) and let A; (resp. B,) denote the block of the
first m; digits of 6 (resp. n). A, consists of the digit 1 and B, consists of the
digit 0. For j> 1, 4; and B; are defined inductively by

Ajp = A;A;-4;B; (A; appearing n;—1 times)
B;., = B;B;---B;A; (B; appearing n;—1 times).

The same argument as in Example 1 shows that for this 6, M, is a minimal
Orlicz function. The condition in the statement of Proposition 2 is satisfied with
K =0 and n(m;_,) = 3m;. By the choice of the n; the density of the 1’s in A4;
is larger than []{Z{(1—n;") = 2/3 while the density of the 1’s in B, is less than
1/3. It follows from Proposition 1 that ay, < p; + (P2—p1)/3, Pu, =Py +
2(p2—p1)/3.

In spite of the fact that the space Iy, has subspaces isomorphic to {, for an
entire interval of p’s, it does not have any [, as a complemented subspace (a simi-
lar result for Example 1 was proved in [9]). In order to prove this, we apply
[9, Th. 2] and show that x? is strongly nonequivalent to Ey, . for every p. For
the sake of simplicity we shall prove this assertion only under the assumption
that the n; do not grow too fast, say if n;Sm;=ngnyn_g.

By the definition of 6 any block of digits in 6 of length (n; + 2)m; has sublocks
equal to 4; and to B;. This means that for every integer k there are integers s
and u ; s,u < (n; + 1)m; such that
(3.3) My(x exp(k—s))/My(exp(—k~s)) = My(x), exp(—m;) S x £ 1
G4 My(xexp(—k—u))/Mg(exp(—k—u)) = M,(x), exp(—m;) < x £ 1.

Consider now the (1; + 2)m; points x; = exp( — i), i = 1,-,(n; + 2)m;. Assume
that there is an integer k and a constant K such that for i =1,2,--, (n 5+ 2)m,

and x; = exp(— i)

K=1 < My(x;exp(— k) [x]My(exp( — k))
(3.5
= My(exp( — i — k))[exp(— ip)My(exp(— k) = K.
Let 5 be such that (3.3) holds for this k. By dividing (3.5) with i =s + m; by (3.5)
with i = 5 and then applying (3.3) we get
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(3.6) K-2 £ M (exp(— m))Jexp(— mp) < K2,

Similarly it follows from (3.4) and (3.5) that

3.7 K=2 £ M,(exp(~m))/exp(— mp)< K2.
It follows from (3.6) and (3.7) that

(3.8) K~=* £ My(exp (— m)) /M, (exp(~m)) £ K*.

However, since the density of 1's in 4;is > 2/3 and in B;is > 1/3, it follows
(sec observation (i)) that
(3.9 M(exp(— mp)/M,(exp(—m))) S exp(— (p, — pym,;[3).

By (3.8) and (3.9) logK > (p, — pi)m;/12. Since the number of points x; we
used is £ 2n;m; < 2mf we proved, as desired, the fact that x? is strongly non-
equivalent to Eyy, ;.

Let us now describe all possible intervals of minimal Orlicz functions. Actually,
there is only one limitation: if a=1 and F is minimal then F(x)=x. Indeed if
t,F'(t,)/F(t,)— 1 then the convexity of F implies that F(t,x)/F(t,) — x, for
0 < x =1 and hence by minimality F(x) = x. However for every l<a<f< o
there is a minimal Orlicz function whose interval is exactly [o, f]. This is a con-
sequence of the constructions given in Examples 1 and 2 and the following remark.
Let p>1 and let t > (p — 1)/p. The functions F(x) = x? and G(x)=px —p +1
satisfy in the interval [¢,1] the assumptions which appear in the definition of
M, (with ¢ replacing e~*).For every r > p we can of course choose ¢ such that
G(H) =t

To conclude this section, let us justify the remark previously made that the
functions M, represent essentially all Orlicz functions: Every Orlicz function M
such that 1, is reflexive is equivalent to a function of the form My (if in the
definition of Mywe replace e™* by a suitable t € (0, 1)). Indeed, since [,, is reflexive,
we can assume with no loss of generality that for some 1 < p<r < oo and all
xe(0,1), p £ xM'(x)/M(x) £r, and hence "< M(tx)/ M(x) S t?,0<x,t < 1.
Choose now t,F and G as in the preceding paragraph so that F(f)=t?, G(t) =t".

Now we construct inductively a sequence 6 = {6(i)} as follows: §(1) =1 and
if Mg(t")t? < M(t"**) then we set O(n + 1) = 0; otherwise, 6(n 4 1) = 1. It can be
easily verified that

M,(1") £ M(") S tP~"M((t"); n=1,2,....

Clearly, M, is equivalent to M.



382 J. LINDENSTRAUSS AND L. TAZFRIRI Israel J. Math.,

4. Orlicz function spaces

First we give some basic definitions. Let F be an Orlicz function on [0, «0].
By L we denote the space of all measurable functions f on [0,1] such that
fo FQ|f(®)|)dt < oo for some A > 0. We say that F satisfies the A, condition at
oo if sup ;> 1 F(2x)/F(x) < co. This supremum is called the A, constant of F (at o).
If F satisfies the A, condition at co, L consists of all the measurable f such that
[ F(|f(®))dt < oo. The unit ball of Ly is taken as {f; [o F(}f(9)dt S1}.
Unless stated otherwise, we shall assume whenever we consider Ly that F satisfies
the A, condition at co. Up to isomorphism, Ly is determined by the values of
F(x) for large x.

If we replace the interval [0, 1] on which we integrate F(|f(1)|) by an arbitrary
subset of the line with a finite positive measure and consider the function space on
this set, we clearly do not get anything new. On the other hand, if we replace [0,1]
by the whole line (or any set of infinite measure), new features enter into the study
of Orlicz function spaces. In particular, the values of F near co as well as near 0
are important. The case of general Orlicz function spaces (which certainly deserves
careful study) is not treated here.

The interval associated with an Orlicz function F at oo is denoted by [agF, f5 ]
and is defined by

op = sup {p;lsup F(x)y? [F(xy) < o}

=x.y
Br = inf{p; inf F(x)y?/F(xy)> 0}.
1<x,y
In studying the connection between Orlicz function spaces and Orlicz sequence

spaces, it is convenient to associate with F some subsets of C(0,1). The set of
functions G(x) which are of the form lim F(xy,)}/F(y,), 0 £ x < 1, for some

n->aw

sequence y, — oo is denoted by E7. Notice that even if F is defined only for large
x, the limit is defined for every x > 0. We always have G(0) = 0. The closed
convex hull of E7 is denoted by C;°. If F satisfies the A, condition at oo then
E7 and C;° are nonempty compact subsets of C(0,1). An argument similar to
that given in the proof of Theorem 1 shows that xPeC if and only if
pelar, fr].

We pass now to our first result on function spaces.

THEOREM 3. An Orlicz function space Ly which is not isomorphic to a Hilbert
space, is not isomorphic to a subspace of a separable Orlicz sequence space l;.
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Proor. If F does not satisfy the A, condition at oo, Ly is nonseparable and
there is nothing to prove. We therefore assume that F satisfies A, at co.

Let r,(t) =signsin2"~?nt, n =1,2,-.- be the Rademacher functions on [0, 1].
The well-known Khintchin inequality implies that the span of the {r,}7. in L
is isomorphic to [, i.e. that for some constant K

@.1) K NEXPL| Z A |rs K(E )

for every choice of {4,}. The constant K in (4.1) can be chosen to depend only
on the A, constant of F, if F is normalized by F(1) =1 (since this A, constant
determines constants C and p so that F(x) £ Cx?, x = 1). It follows that we may
assume that (4.1) holds with the same K if F is replaced by F(xy)/F(y) for some
y. Applying this remark to the case where y,, is chosen to satisfy F(y,) = m with
m being an integer, we get for all choices of {4,} that

(4.2) KNE 2P| Z Wla| SKZ )5 m=1,2,-

where 7, are the normalized Rademacher functions on [0, m=1],ie. (0
=r(mt) [y, if t<m™' and =0 if ¢t>m~' By translating {r{,} =
by (i — 1) /m, we get the normalized Rademacher sequence {r;’; },2; on the inter-
val [(i— 1)/m,i/m]. Trivially (4.2) remains valid if we replace the index 1 in 7},
by some fixed i (1 < i < m). Observe also that | 1], | = 1 for all i,m and n.

Before proceeding with the proof let us recall two simple facts concerning
Orlicz sequence spaces which will be needed below.

a) Let H, and H, be two Orlicz functions on [0,1] with H,(1) = H,(1)= 1.
Assume that the identity map I from Iy onto Iy, is an isomorphism. Then
C ' gH,(x)/Hy(x)£C, 0<x <1 for some constant C depending only on
” I H H -t l’ and the A, constants of H, and H,.

b) Let H(x) be an Orlicz function and let x = X; y,e;€ 1, (as usual, the e;
denote the unit vectors). Assume that C; ' < % H(|y j|) =< C, for some con-
stant C,. Then there is a constant D, depending on C, and the A, constant of H
such that D' £ Hx“ <D.

Assume now that there is an isomorphism T from L; into /; for some G
satisfying the A, condition at 0, and let m be an integer. Since w—lim,r;",
=0 for 1 £i < m, we may, by a standard procedure, choose subsequences
{niti=1, 12 i<m, of integers and vectors x;, in lg such that all x;, have
disjoint supports and
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(4.3) | %tk = Tri, | £ 275 1Sigmy k=12
The assertion that x;,, have disjoint supports means that

4.4 xi = z Vi€ A () Aiyr, #8 = iy =1, and k; =k;.

JEAuk

(The x;,;, A; and y; depend also on m. For simplicity of notation we did not

write this explicitly.) Consider now the Orlicz functions H; ,(x) = X G( I 7 I x). It
jedisk

follows from (4.3) that {H; ,(1)} is bounded and bounded away from 0 by constants
independent of m. Since G satisfies A,, the set {H; ,(x)} is totally bounded in C(0, 1)
and hence, without loss of generality we may assume that H(x) = lim H;,(x)

k—

exists uniformly on [0, 1] for 1 <i < m (otherwise pass to a suitable subsequence).
From (4.2), (4.3) and (4.4) it follows that the identity map I, from g, into /, is an
isomorphism with || I; | [|I7* | bounded by a constant independent on i and m.
Hence by remark (a) above there is a constant C independent of i and m such that

(4.5) C-*SHX)/x*sC, 0<xs1.

Let D be constant, given in remark (b) above, which corresponds to the function G
and the constant Cy = 2C.
For every 1 < i £ m choose an integer k(i) such that

(4.6) 270 <12mD, |Hppo(¥)— H(x)|S1/2mC; 0=xs1.

For simplicity of notation, put ¢; = P mkciys Vi = Kook and B; = 4,
Let {;}7=1 be numbers such that®"_;4; = 1. By (4.3) and (4.6)

@.7n I T(ﬁ" h) — s il s 9 |4;|/2mD < 1/2D.
i=1 i=1 i=1
Also, by (4.6)
4.8) |§: 2 G|y, - Em H(| 4| s m/2mC =1]2C.
i=1 jeB; i=1

By (4.5) and (4.8)

12csCc* L A2-12< X X G(hypscC T A +1/2C< 2C.
i=1 i=1

i=1 jEBl

1t follows from the choice of D that

D~ < T i | =,
i=1
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and hence by (4.7)

(4.9) appy|ri | é Ao | g2p T,

Each @, is a function with constant absolute value on [(i—1)/m,i/m] and is 0
outside this interval. Since H f H = H I f l ” for every fe L, it follows from (4.9)
that for every m there is an operator U, from the m-dimensional Hilbert space into
the subspace of Ly consisting of the functions which are constant on each interval
of the form [(i — 1)m, i/m), such that | U, | |[U, ' is bounded by a constant
independent of m. In the terminology of [ 7] this means that L is a £, space, i.e. it
is isomorphic to a Hilbert space. Q.E.D.

REMARK. The same proof works if we replace Ly by a rearrangement-invariant
function space on [0,1] provided that the normalized Rademacher functions
{rM}.%, span a subspace isomorphic to I, with an isomorphism constant indepen-
dent of m (itisclearly independent of i). Sufficient conditions for this to happen
can be deduced from the interpolation theorem of Semenov [14]. On the other
hand, in Theorem 3 we cannot replace the Orlicz space I; by an arbitrary space
with a symmetric basis. In fact, those Orlicz function spaces which have an un-
conditional basis (i.e. the reflexive Orlicz function spaces, cf. [2]) can be embedded
isomorphically into Banach spaces with symmetric bases (cf. [6]).

Let F be an Orlicz function and let ¢ > 0. The following sets are of importance
in the study of Lg:

AL = {fifeLp, p{; O] 2z ¢|f|} 2 8

where p denotes the Lebesgue measure. We prove next a simple generalization of
a result of Kadec and Pelczynski [ 3].

ProposITION 3. Let {f,} be a sequence of functions with norm 1 in Lg. If the
set {f,} is not contained in A for some &> 0, then there is a subsequence of
{f.} which is equivalent to the unit vector basis in l; for some Ge Cg.

PrOOF. A rather well-known procedure (see [3] for details) shows that if for
every & > 0 there is an n = n(e) with f, ¢ A%, then there is a subsequence {f, }i-1
of {f,} consisting of functions having “‘almost disjoint> supports. That is, there
exist g, € Ly such that ” 9x — o H < 27% for every k, and the sets A4, = {t;g,(t)
# 0} are mutually disjoint. Since pu(4,)— 0 there is no loss of generality in
assuming that y, = inf {[ g0 I, te A,} tends to oo (if we replace g,(f) by 0 when-
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ever I gk(t)l is smaller than a suitably chosen y,, we change g, only by a small
amount in the norm of Ly). Since ||£, | =1 we may assume also that | g, | =1
for all k. Consider the functions Hy(x) = [, o F(x | g0 ])dt, 0 < x < 1. Since H, (1)
=1 for every k, it follows that H,(x) is in the convex hull of {F(xy)/F(y)},5,,-
Since the {H, (x)} form a totally bounded set in C(0, 1), there is a subsequence {H, }
of {H,} which converges to some GeCy. We assume, as we may, that
| He(x) = G(x)| €277, 0 < x < 1. Tt easily follows from this that the unit vector
basis of I is equivalent to the sequence {g,,} and thus to the subsequence { ﬁ,kj}

of the given sequence in Lg.

ProPosITION 4. Let F and G be Orlicz functions. Then, there is an isomor-
phism T from lg into Lg which takes the unit vector basis in l; into functions
in Ly with mutually disjoint supports if and only if G is equivalent to a function
in Cg. If Ge ER then there exists such an isomorphism T for which, in addition,
Tlg is complemented in Lg.

Proor. The ““only if”’ part has already been proved in the proof of Proposition
3. The proof of the “‘if”’ part of the first sentence is identical to the proof of
[9, Th. 1]. If Ge EF then the isomorphism T which is obtained in that proof
maps the unit vectors of I/ into normalized characteristic functions of disjoint sub-
sets of [0,1]. Hence there is a conditional expectation which projects Ly onto Tl;.

COROLLARY. Let F be an Orlicz function with af = 2. Then 1, is isomorphic
to a subspace of Ly if and only if either p=2 or pe[ay,fF]

ProoF. Assume that L has a ‘subspace X isomorphic to I,. We observe first
that if X <4, for some ¢> 0, then p=2. Indeed since oy’ = 2 thereis for any
r <2 aconstant K, such that F(x) = K,.x"for x =z 1. Hence for every ¢ > 0 and
every r < 2 there is a constant C = C(r, &) such that for fe AF, C-1 ”f”,. < ”f”F
clf
this shows that p = 2. If there is no & > 0 for which X < A then by Proposition 3,

],. Thus our given X is isomorphic to a subspace of L, for every r < 2 and

X has a subspace isomorphic to I; for some G e Cy7In this case we get that
pelar, frl.

Conversely, if pe [oF, f5 ] then x?e C¢ and hence, by Proposition 4, I, is iso-
morphic to a subspace of L. A subspace of Ly isomorphic to /, is obtained by
taking the Rademacher functions.

We consider now the question of embedding one Orlicz function space into
another. Several interesting sufficient conditions were given by Bretagnolle and
Dacunha-Castelle [1]. We give here a necessary condition.
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THeOREM 4. Let F and G be Orlicz functions. Assume that g < 2 and that
L is isomorphic to a subspace of Lg. Then sup F(x)/G(x) < co.
x£1

Proor. We shall denote the norms in Ly (resp. Lg) by || . ]| r (resp. “ “ ¢) Let
m be an integer and denote by ¢, ,, the characteristic function of [(i—1) /m, i/m],
i=1,2,-,m Puty,=|¢in|cie Gp)=m. Let T be an isomorphism
from Lg into Lp and put f; ,, = y5, T . Then | T |2 < | fim|r < |T| and
hence, since F satisfies A, at co, we get that

(410) Cc*g f F(fiddtsC, 1Zism  m=12-
0

for some constant C independent of i and m. For every choice of signs 8,
(6; = £ 1) we have

@1 Tl T | Z Ofimle=|T T Obim|eson’ [ T].

As shown in [1,p.470] there is a constant K depending only on the function F
(and thus independent of m) such that

1 m m 1
E(F( 5 0fa0) aysk £ j F(Ify m(®]dt,
0 i=1 i=1 0

where E denotes the average of all possible 2™ choices of 6 ={6,}. In particular,
for at least one-half of the 2™ choices of signs, we have

1 m m 1
(4.12) J F(| Z 6.fi)dt 2K T f F(|f; &) ]at.
0 i=1 i=1 [1]

A simple combinatorial argument shows therefore that we can choose inductively
the signs {67'}7-; for m=2", n=1,2,.-- so that (4.12) holds with 6, =
07" and so that the functions

Vo= T O, (m=2) n=12,..
i=1

are asymptotically orthogonal in the sense that for every k there is an n(k) such
that

(4.13) | f; Viw,(dt| <275, 1Zj<k nznk),
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It follows from (4.13), the fact that ||//,,(t)] = 1, and Khintchine’s inequality that
for every sequence n; tending sufficiently fast to co, the span of {l/l,,j} in Lg is
isomorphic to [,.

Put h, = 5. T, € Ly, n=1,2,---. Notice that there is an & > 0 such that h, e AT
for every n. Indeed, otherwise it would follow from Proposition 3 that for some
sequence {n;}, the functions 9, h, : j = 1,2, are equivalent to the unit vector
basis of I; for some He C7. By the remark in the preceding paragraph and the
fact that T is an isomorphism, it follows that Il is isomorphic to /,. However,
since B < 2 the set Cy contains no function equivalent to x2 and we arrive at a
contradiction.

Since h, e A, n=1,2,-- we have

o]0 s [ F

Dt n=1,2,-.

By (4.10) and (4.12) it follows that

eF(e|h,| ) < 2CK2"
and thus by (4.11)
eF(e/y2n

T-*|) < 2CK2".

Since F satisfies the A, condition it follows that for some constant K; independent
of n, F(y;.) £ K,2" Thus if 2" £ G(x) £ 2"** then x < y;.+: and hence

F(x) £ K,2"*! £ 2K, G(x)

which concludes the proof of the theorem.

COROLLARY. Let F and G be two reflexive Orlicz functions such that
2 ¢[a§°,ﬁ}°|. If Ly is isomorphic to Lg then F is equivalent to G at co.

PrROOF. Assume first that S < 2. By passing to the dual and using Proposition
4 and its Corollary, it follows that 85 = f7. Hence by using twice Theorem 4 it
follows that F is equivalent to G. The case oy > 2 is obtained from the previous
one by duality,

Remarks. We do not know whether the Corollary is true without the assump-

tion 2 ¢[ag, f7 ]. The theorem clearly fails without assuming B§ < 2 since L, is
isomorphic to a subspace of L, for every p.
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